Mean-field theory for the inverse Ising problem at low temperatures.
نویسندگان
چکیده
The large amounts of data from molecular biology and neuroscience have lead to a renewed interest in the inverse Ising problem: how to reconstruct parameters of the Ising model (couplings between spins and external fields) from a number of spin configurations sampled from the Boltzmann measure. To invert the relationship between model parameters and observables (magnetizations and correlations), mean-field approximations are often used, allowing the determination of model parameters from data. However, all known mean-field methods fail at low temperatures with the emergence of multiple thermodynamic states. Here, we show how clustering spin configurations can approximate these thermodynamic states and how mean-field methods applied to thermodynamic states allow an efficient reconstruction of Ising models also at low temperatures.
منابع مشابه
Bethe-Peierls approximation and the inverse Ising model
We apply the Bethe-Peierls approximation to the problem of the inverse Ising model and show how the linear response relation leads to a simple method to reconstruct couplings and fields of the Ising model. This reconstruction is exact on tree graphs, yet its computational expense is comparable to other mean-field methods. We compare the performance of this method to the independent-pair, naive ...
متن کاملSolving the inverse Ising problem by mean-field methods in a clustered phase space with many states.
In this work we explain how to properly use mean-field methods to solve the inverse Ising problem when the phase space is clustered, that is, many states are present. The clustering of the phase space can occur for many reasons, e.g., when a system undergoes a phase transition, but also when data are collected in different regimes (e.g., quiescent and spiking regimes in neural networks). Mean-f...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMaximizing Influence in an Ising Network: A Mean-Field Optimal Solution
Influence maximization in social networks has typically been studied in the context of contagion models and irreversible processes. In this paper, we consider an alternate model that treats individual opinions as spins in an Ising system at dynamic equilibrium. We formalize the Ising influence maximization problem, which has a natural physical interpretation as maximizing the magnetization give...
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2012